

Software tools

- Software: in analysis repository
 - https://github.com/sPHENIX-Collaboration/analysis/tree/master/EMCalanalysis
 - Fun4All analysis module to build condensed DST objects
 → pico-DST file of emcal focused analysis

Procedure:

- 1. From a truth particle
- -> Find best track (cut on good track)
- 3. -> Project to calorimeters
- 4. -> Build cluster around the track projection
- 5. -> Likelihood PID based on cluster energy deposition (EMCal/Inner HCal)
- **6.** -> Shower shape

Analysis module :

- EMCal-analysis/EMCalAna: track projection, clustering, truth association Mike's evaluator tool are very useful in trace between truth and reco track/towers
- EMCal-analysis/EMCalLikelihood: assign log-likelihood to track-cluster pairs
 Plot macros: EMCal-analysis/macro

Shower distribution around the track

- In discussion about current problem:
 - https://github.com/sPHENIX-Collaboration/coresoftware/pull/69
 - Using this quick solution right now
- Result plot: 8GeV electron track projection to 2D projective SPACAL
- Not shown here though: with 8mm strip at last layer, projection is discretized to 2mm steps at a given vertex point

Track projection checks – Removing

All reconstructed tracks

Track with pT reco within 5% of truth (sample for eID ana.)

Building cluster based on tower distance to the track production (+shift cor.)

First choice of cluster radius cut is 1.6 tower width in both inner Hcal and EMCal

- 98% EM-shower containment in EMCal, 90% hadron shower containment in EMCal, 80% hadron shower containment in inner Hcal
- If shower hit around tower center, neighbor towers are included
- Average cluster size ~ 8 towers, similar but better than 3x3-tower cluster

A tighter cluster radius would further balance reduction of HI background VS leakages (shower size/mismatches, etc.)

Cluster energy matching, EMCal only 4 GeV shower in 2D proj. SPACAL @ eta=0

- Simple EMCal cut to illustrate expected performance
- Significant improvement for Birk correction
 - Pion tail reduced from ~ 1.6% to 0.6%

Energy matching with inner HCal 4/8 GeV shower in 2D proj. SPACAL @ eta=0

PHENIX

Pion

Comparing to

New plot (pro1.beta5)
With Birk corrections
Fully implemented 2D SPACAL

Beyond energy sum: shower shape 8 GeV showers in 2D proj. SPACAL @ eta=0

- Beyond cluster energy deposition, one can build a likelihood based on shower shape
- But we try not relying on it during design stage, as it is more relying on simulation accuracy

Shower distribution @ forward-most: 8 GeV e- in eta = 0.9-1.0

2D Spacal Average cluster ~8 towers 1D Spacal
Average cluster ~12+ towers

Summary

- Birk correction has large influence over hadron tails
 - Suppressed the h/e
 - Simple comparison showed x2-3 improvement in pp eID as the pion tail shifted to lower amplitude
- What is going-on now? Embedding
 - Embedding production finished for both 1D and 2D SPACAL
 - Thanks Chris!
 - Analysis job finishing up (most CPU time in tracking in hijing hits)
 - Expect improved electron-ID curve with embedded particle too,
 - Suppressed hadron shower tail
 - Hadron background response in calorimeters
 - Checking it through before showing around...

Extra information

eID and pion rejection in pp : E/p + HCal

4GeV electron and pion-, $|\eta|$ <0.2

EMCal tower cut: R<3cm, Hcal cut: R<20cm

- all events
- with EMCal E/p cut

eID in central AuAu, central pseudo-rapidity

4GeV electron and pion-, |η|<0.2 EMCal tower cut : R<3cm, Hcal cut : R<20cm

- Hijing background (AuAu 10%C in B-field)
- all c(w/ embedding)
- with EMCal E/p cut (w/ embedding)

SPACAL 1D

Upsilon simulation and selection

Sampling Fraction

DrawSF.pdf

uang/sPHENIX_work/single_particle/DrawEcal

Linearality – double checking

Energy resolution Simulated with single photons

Full detector Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe), Graph clusterizer

sPHENIX full detector single photon simulation

EIC RD1 study
FermiLab beam tests

Photon resolution [Megan and Stefan]

- PHENIX Clusterizer from Sasha B. survived PHENIX->sPHENIX migration.
 - Promising use of the PHENIX Clusterizer in HI embedded events
- Fit with Gaus
- [0]*exp(-0.5*((x-[1])/[2])**2)

Plots from Megan Connors (GSU) henergy

